Почему черная дыра черная. Почему черная дыра не поглотила мистический объект? А почему они невидимы

Изучая мир, дети, а затем и повзрослевшие уже люди, постепенно расширяют свои горизонты, вовлекая в круг своих интересов все более глобальные понятия. Когда дело доходит до изучения Космоса и Вселенной, одним из первых вопросов становится – почему черная дыра черная? Чтобы дать ответ на него, необходимо хоть немного разобраться в природе этого явления.

Почему образуются черные дыры

Любой предмет во Вселенной устроен из частиц, составляющих его материю. Обладая определенным зарядом, они удерживаются на расстоянии друг от друга, не разлетаясь в пространстве, но и не слипаясь между собой.

Применительно к звездам происходит тоже самое. Частицы материи, из которых они состоят, сохраняют свое положение благодаря излучаемой светилом энергии термоядерных реакций. Но, поскольку она имеет конечное значение, с течением времени она иссякает и начинается процесс уплотнения материи. В результате происходит медленное, но неотвратимое сжимание звезды, сопровождающееся нарастанием плотности составляющего ее вещества.

Такое катастрофическое «схлопывание» светила называется коллапсом. Итогом становится появление небесного тела небольшого размера с огромной массой. Для большей наглядности такого явления достаточно представить себе Земной шар, вес которого вмещен в сферу диаметром 1 см.

Чтобы образовалась устойчивая черная дыра, исходная масса схлопывающейся звезды должна быть не меньше тройной массы нашего Солнца. Ученые называют цифры гораздо большие. Для возникновения новой дыры масса коллапсирующего светила должна быть больше солнечной минимум в 10 раз.

Почему черная дыра неплотная

Из курса физики каждому известно, что любые предметы, обладающие массой, способны притягивать другие объекты. И чем масса больше, тем сильнее возникающее вокруг них поле, в приложении к крупным космическим объектам названное гравитацией. Благодаря наличию гравитационного поля, вокруг звезд вращаются планеты, которые, в свою очередь, имеют спутники.

При возникновении черной дыры сила гравитационного поля достигает огромных значений, что приводит к искривлению пространства-времени. Центр новообразования получил название сингулярность, а расстояние от него до границы, или горизонта событий, называется радиус Шварцшильда. Для Солнца, превратившегося в новую черную дыру, этот показатель соответствовал бы 3 км.

Это позволяет говорить о том, что черная дыра не что иное, как область Вселенной, в которой прекращают действовать обычные законы физики, а любая материя в обычном понимании исчезает. Время внутри этого объема останавливается, а линейное пространство скручивается. Это является ответом на вопрос, часто возникающий при знакомстве с подобным космическим явлением, – почему в черной дыре нет времени?

Почему черная дыра черная

Черная дыра также является небесным телом. Только ее ядро имеет настолько огромную массу, что возникшее вокруг него гравитационное поле способно притягивать частицы материи со скоростью, превышающую скорость света. Поскольку световые лучи представляют собой поток квантов, они также подвергаются воздействию силы притяжения. Попадая в горизонт событий (зону, где гравитация становится больше скорости света), световые частицы не могут противостоять гравитационному полю и поглощаются черной дырой. В результате образуется область полной темноты, из которой не выходит никакого света. Вот почему черная дыра черная — для наблюдателя она выглядит как непроглядное пятно на фоне окружающей Вселенной.

Почему невозможно обнаружить черную дыру

Полное поглощение любых частиц и лучей, попадающих в горизонт событий, приводит к тому, что черную дыру невозможно увидеть с помощью всевозможных приборов. Не имея отражения, не испуская никаких излучений видимого спектра, она остается невидимой.

Обнаружить ее можно только благодаря искажениям окружающего пространства, вызванным воздействием . А также наблюдая за расположенными рядом с ней космическими телами и частицами.

Единственным излучением, которое можно уловить с помощью современной аппаратуры являются рентгеновские лучи. Этот вид энергии способен преодолеть горизонт событий и показать, в каком месте Вселенной когда-то произошло «схлопывание» сверх тяжелой звезды.

Самое загадочное явление Вселенной

Несмотря на то, что ученые активно прорабатывают различные теории о природе , информации о них все еще недостаточно. И исследователи не могут полностью гарантировать истинность своих научных выкладок. В большинстве своем – это математические расчеты и допущения. И даже ответ на простой «детский» вопрос «почему черная черная дыра?» – это кропотливо просчитанные математические анализы и теории.

Черные дыры — единственные космические тела, способные притягивать силой гравитации свет. Они же являются самыми большими объектами Вселенной. Мы вряд ли в ближайшее время узнаем, что происходит возле их горизонта событий (известного как «точка невозврата»). Это самые таинственные места нашего мира, о которых, несмотря на десятилетия исследований, до сих пор известно очень мало. В этой статье собраны 10 фактов, которые можно назвать наиболее интригующими.

Черные дыры не втягивают в себя материю

Многие представляют черную дыру своеобразным «космическим пылесосом», втягивающим в себя окружающее пространство. На самом деле, черные дыры — это обычные космические объекты, обладающие исключительно сильным гравитационным полем.

Если бы на месте Солнца возникла черная дыра таких же размеров, Земля не была бы втянута внутрь, она вращалась бы по той же орбите, что и сегодня. Расположенные рядом с черными дырами звезды теряют часть массы в виде звездного ветра (это происходит в процессе существования любой звезды) и черные дыры поглощают только эту материю.

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Черные дыры могут порождать новые вселенные


Мысль о том, что черные дыры могут порождать новые вселенные кажется абсурдной (тем более, что мы все еще не уверены в существовании других вселенных). Тем не менее, подобные теории активно разрабатываются учеными.

Очень упрощенная версия одной из этих теорий заключается в следующем. Наш мир обладает исключительно благоприятными условиями для появления в нем жизни. Если бы какие-либо из физических констант изменились хотя бы чуть-чуть, нас бы не было в этом мире. Сингулярность черных дыр отменяет обычные законы физики и может (по крайней мере, в теории) породить новую вселенную, которая будет отличаться от нашей.

Черные дыры могут превратить вас (и все, что угодно) в спагетти


Черные дыры растягивают предметы, которые находятся рядом с ними. Эти предметы начинают напоминать спагетти (есть даже специальный термин - «спагеттификация»).

Это происходит благодаря тому, как работает сила притяжения. В настоящий момент ваши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры разница в силе притяжении начинает работать против вас. Ноги притягиваются к центру черной дыры все быстрее, так, что верхняя половина туловища не успевает за ними. Результат: спагеттификация!

Черные дыры испаряются со временем


Черные дыры не только поглощают звездный ветер, но и испаряются. Это явление было открыто в 1974 году и было названо излучением Хокинга (по имени Стивена Хокинга, сделавшего открытие).

Со временем черная дыра может отдать всю свою массу в окружающее пространство вместе с этим излучением и исчезнуть.

Черные дыры замедляют время вблизи себя


По мере приближения к горизонту событий время замедляется. Чтобы понять, почему это происходит, нужно обратиться к «парадоксу близнецов», мысленному эксперименту, часто используемому для иллюстрации основных положений общей теории относительности Эйнштейна.

Один из братьев-близнецов остается на Земле, а второй улетает в космическое путешествие, двигаясь со скоростью света. Вернувшийся на Землю близнец обнаруживает, что его брат постарел больше, чем он, потому что при движении на скорости, близкой к скорости света, время идет медленнее.

Приближаясь к горизонту событий черной дыры, вы будете двигаться с такой высокой скоростью, что время для вас замедлится.

Черные дыры являются самыми совершенными энергетическими установками


Черные дыры генерируют энергию лучше, чем Солнце и другие звезды. Это связано с материей, вращающейся вокруг них. Преодолевая горизонт событий на огромной скорости, материя на орбите черной дыры разогревается до крайне высоких температур. Это называется излучением абсолютно черного тела.

Для сравнения, при ядерном синтезе в энергию превращается 0,7% материи. Вблизи черной дыры энергией становятся 10% материи!

Черные дыры искривляют пространство рядом с собой

Пространство можно представить себе как растянутую резиновую пластинку с нарисованными на ней линиями. Если на пластинку положить какой-нибудь объект, она изменит свою форму. Так же работают и черные дыры. Их экстремальная масса притягивает к себе все, включая свет (лучи которого, продолжая аналогию, можно было бы назвать линиями на пластинке).

Черные дыры ограничивают количество звезд во Вселенной


Звезды возникают из газовых облаков. Для того, чтобы началось формирование звезды, облако должно остыть.

Излучение абсолютно черных тел мешает газовым облакам остывать и предотвращает появление звезд.

Теоретически, любой объект может стать черной дырой


Единственное отличие нашего Солнца от черной дыры — сила гравитации. В центре черной дыры она намного сильнее, чем в центре звезды. Если бы наше Солнце было сжато до примерно пяти километров в диаметре, оно могло бы быть черной дырой.

Теоретически, черной дырой может стать все, что угодно. На практике же мы знаем, что черные дыры возникают только в результате коллапса огромных звезд, превышающих Солнце по массе в 20-30 раз.

По причине относительно недавнего роста интереса к созданию научно-популярных фильмов на тему освоения космоса современный зритель наслышан о таких явлениях как сингулярность, или черная дыра. Однако, кинофильмы, очевидно, не раскрывают всей природы этих явлений, а иногда даже искажают построенные научные теории для большей эффектности. По этой причине представление многих современных людей о указанных явлениях либо совсем поверхностно, либо вовсе ошибочно. Одним из решений возникшей проблемы является данная статья, в которой мы попытаемся разобраться в существующих результатах исследований и ответить на вопрос - что такое черная дыра?

В 1784-м году английский священник и естествоиспытатель Джон Мичелл впервые упомянул в письме Королевскому обществу некое гипотетическое массивное тело, которое имеет настолько сильное гравитационное притяжение, что вторая космическая скорость для него будет превышать скорость света. Вторая космическая скорость - это скорость, которая потребуется относительно малому объекту, чтобы преодолеть гравитационное притяжение небесного тела и выйти за пределы замкнутой орбиты вокруг этого тела. Согласно его расчетам, тело с плотностью Солнца и с радиусом в 500 солнечных радиусов будет иметь на своей поверхности вторую космическую скорость равную скорости света. В таком случае даже свет не будет покидать поверхность такого тела, а потому данное тело будет лишь поглощать поступающий свет и останется незаметным для наблюдателя - неким черным пятном на фоне темного космоса.

Однако, концепция сверхмассивного тела, предложенная Мичеллом, не привлекала к себе большого интереса, вплоть до работ Эйнштейна. Напомним, что последний определил скорость света как предельную скорость передачи информации. Кроме того, Эйнштейн расширил теорию тяготения для скоростей близких к скорости света (). В результате этого к черным дырам уже было не актуально применять ньютоновскую теорию.

Уравнение Эйнштейна

В результате применения ОТО к черным дырам и решения уравнений Эйнштейна были выявлены основные параметры черной дыры, которых всего три: масса, электрический заряд и момент импульса. Следует отметить значительный вклад индийского астрофизика Субраманьяна Чандрасекара, который создал фундаментальную монографию: «Математическая теория чёрных дыр».

Таким образом решение уравнений Эйнштейна представлено четырьмя вариантами для четырех возможных видов черных дыр:

  • ЧД без вращения и без заряда - решение Шварцшильда. Одно из первых описаний черной дыры (1916 год) при помощи уравнений Эйнштейна, однако без учета двух из трех параметров тела. Решение немецкого физика Карла Шварцшильда позволяет высчитать внешнее гравитационное поле сферического массивного тела. Особенность концепции ЧД немецкого ученого состоит в наличии горизонта событий и скрывающейся за ним . Также Шварцшильд впервые вычислил гравитационный радиус, получивший его имя, определяющий радиус сферы, на которой располагался бы горизонт событий для тела с данной массой.
  • ЧД без вращения с зарядом - решение Рейснера-Нордстрёма. Решение, выдвинутое в 1916-1918 годах, учитывающее возможный электрический заряд черной дыры. Данный заряд не может быть сколь угодно большим и ограничен по причине возникающего электрического отталкивания. Последнее должно компенсироваться гравитационным притяжением.
  • ЧД с вращением и без заряда - решение Керра (1963 год). Вращающаяся черная дыра Керра отличается от статичной, наличием так называемой эргосферы (об этой и др. составных черной дыры - читайте далее).
  • ЧД с вращением и с зарядом — Решение Керра — Ньюмена. Данное решение было вычислено в 1965-м году и на данный момент является наиболее полным, так как учитывает все три параметра ЧД. Однако, все же предполагается, что в природе черные дыры имеют несущественный заряд.

Образование черной дыры

Существует несколько теорий о том, как образуется и появляется черная дыра, наиболее известная из которых - возникновение в результате гравитационного коллапса звезды с достаточной массой. Таким сжатием может заканчиваться эволюция звезд с массой более трех масс Солнца. По завершению термоядерных реакций внутри таких звезд они начинают ускоренно сжиматься в сверхплотную . Если давление газа нейтронной звезды не может компенсировать гравитационные силы, то есть масса звезды преодолевает т.н. предел Оппенгеймера — Волкова, то коллапс продолжается, в результате чего материя сжимается в черную дыру.

Второй сценарий, описывающий рождение черной дыры - сжатие протогалактического газа, то есть межзвездного газа, находящегося на стадии превращения в галактику или какое-то скопление. В случае недостаточного внутреннего давления для компенсации тех же гравитационных сил может возникнуть черная дыра.

Два других сценария остаются гипотетическими:

  • Возникновение ЧД в результате - т.н. первичные черные дыры.
  • Возникновение в результате протекания ядерных реакций при высоких энергиях. Пример таких реакций - эксперименты на коллайдерах.

Структура и физика черных дыр

Структура черной дыры по Шварцшильду включает всего два элемента, о которых упоминалось ранее: сингулярность и горизонт событий черной дыры. Кратко говоря о сингулярности, можно отметить, что через нее невозможно провести прямую линию, а также, что внутри нее большинство существующих физических теорий не работают. Таким образом, физика сингулярности на сегодня остается загадкой для ученых. черной дыры - это некая граница, пересекая которую, физический объект теряет возможность вернуться обратно за ее пределы и однозначно «упадет» в сингулярность черной дыры.

Строение черной дыры несколько усложняется в случае решения Керра, а именно при наличии вращения ЧД. Решение Керра подразумевает наличие у дыры эргосферы. Эргосфера - некая область, находящаяся снаружи горизонта событий, внутри которой все тела движутся по направлению вращения черной дыры. Данную область еще не является захватывающей и ее возможно покинуть, в отличие от горизонта событий. Эргосфера, вероятно, является неким аналогом аккреционного диска, представляющего вращающееся вещество вокруг массивных тел. Если статичная черная дыра Шварцшильда представляется в виде черной сферы, то ЧД Керри, в силу наличия эргосферы, имеет форму сплюснутого эллипсоида, в виде которого мы часто видели ЧД на рисунках, в старых кинофильмах или видеоиграх.

  • Сколько весит черная дыра? - Наибольший теоретический материал по возникновению черной дыры имеется для сценария ее появления в результате коллапса звезды. В таком случае максимальная масса нейтронной звезды и минимальная масса черной дыры определяется пределом Оппенгеймера — Волкова, согласно которому нижний предел массы ЧД составляет 2.5 - 3 массы Солнца. Самая тяжелая черная дыра, которую удалось обнаружить (в галактике NGC 4889) имеет массу 21 млрд масс Солнца. Однако, не стоит забывать и о ЧД, гипотетически возникающих в результате ядерных реакций при высоких энергиях, вроде тех, что на коллайдерах. Масса таких квантовых черных дыр, иначе говоря «планковских черных дыр» имеет порядок , а именно 2·10 −5 г.
  • Размер черной дыры. Минимальный радиус ЧД можно вычислить из минимальной масса (2.5 - 3 массы Солнца). Если гравитационный радиус Солнца, то есть область, где находился бы горизонт событий, составляет около 2,95 км, то минимальный радиус ЧД 3-х солнечных масс будет около девяти километров. Такие относительно малые размеры не укладываются в голове, когда речь идет о массивных объектах, притягивающих все вокруг. Однако, для квантовых черных дыр радиус равен — 10 −35 м.
  • Средняя плотность черной дыры зависит от двух параметров: массы и радиуса. Плотность черной дыры с массой порядка трех масс Солнца составляет около 6 ·10 26 кг/м³, тогда как плотность воды 1000 кг/м³. Однако, столь малые черные дыры не были найдены учеными. Большинство обнаруженных ЧД имеют массу более 10 5 масс Солнца. Существует интересная закономерность, согласно которой чем массивнее черная дыра, тем меньше ее плотность. При этом изменение массы на 11 порядков влечет изменение плотность на 22 порядка. Таким образом черная дыра массой 1 ·10 9 солнечных масс имеет плотность 18.5 кг/м³, что на единицу меньше плотности золота. А ЧД массой более 10 10 масс Солнца могут иметь среднюю плотность меньше плотности воздуха. Исходя из этих расчетов логично предположить, что образование черной дыры происходит не по причине сжатия вещества, а в результате накопление большого количества материи в некотором объеме. В случае с квантовыми ЧД, их плотность может составлять около 10 94 кг/м³.
  • Температура черной дыры также обратно пропорционально зависит от ее массы. Данная температура непосредственно связана с . Спектр этого излучения совпадает со спектром абсолютно черного тела, то есть тела, что поглощает все падающее излучение. Спектр излучения абсолютно черного тела зависит только от его температуры, тогда температуру ЧД можно определить по спектру излучения Хокинга. Как было сказано выше, данное излучение тем мощнее, чем меньше черная дыра. При этом излучение Хокинга остается гипотетическим, так как еще не наблюдалось астрономами. Из этого следует, что если излучение Хокинга существует, то температура наблюдаемых ЧД столь мала, что не позволяет зарегистрировать указанное излучение. Согласно расчетам даже температура дыры с массой порядка массы Солнца - пренебрежительно мала (1 ·10 -7 К или -272°C). Температура же квантовых черных дыр может достигать порядка 10 12 К и при их скором испарении (около 1.5 мин.) такие ЧД могут испускать энергию порядка десяти миллионов атомных бомб. Но, к счастью, для создания таких гипотетических объектов потребуется энергия в 10 14 раз больше той, которая достигнута сегодня на Большом адронном коллайдере. Кроме того, подобные явления ни разу не наблюдались астрономами.

Из чего состоит ЧД?


Еще один вопрос волнует, как ученых, так и тех, кто просто увлекается астрофизикой — из чего состоит черная дыра? На этот вопрос нет однозначного ответа, так как за горизонт событий, окружающий любую черную дыру, заглянуть не представляется возможным. Кроме того, как уже говорилось ранее, теоретические модели черной дыры предусматривают всего 3 ее составных: эргосфера, горизонт событий и сингулярность. Логично предположить, что в эргосфере имеются лишь те объекты, которые были притянуты черной дырой, и которые теперь вращаются вокруг нее - разного рода космические тела и космический газ. Горизонт событий - лишь тонкая неявная граница, попав за которую, те же космические тела безвозвратно притягиваются в сторону последней основной составляющей ЧД - сингулярности. Природа сингулярности сегодня не изучена и о ее составе говорить еще рано.

Согласно некоторым предположениям черная дыра может состоять из нейтронов. Если следовать сценарию возникновения ЧД в следствие сжатия звезды до нейтронной звезды с последующим ее сжатием, то, вероятно, основная часть черной дыры состоит из нейтронов, из которых состоит и сама нейтронная звезда. Простыми словами: при коллапсе звезды ее атомы сжимаются таким образом, что электроны соединяются с протонами, тем самым образуя нейтроны. Подобная реакция действительно имеет место в природе, при этом с образованием нейтрона происходит излучение нейтрино. Однако, это лишь предположения.

Что будет если попасть в черную дыру?

Падение в астрофизическую черную дыру приводит к растяжению тела. Рассмотрим гипотетического космонавта-смертника, который направился в черную дыру в одном лишь скафандре ногами вперед. Пересекая горизонт событий, космонавт не заметит никаких изменений, несмотря на то, что выбраться обратно у него уже нет возможности. В некоторый момент космонавт достигнет точки (немного позади горизонта событий), в которой начнет происходить деформация его тела. Так как гравитационное поле черной дыры неоднородно и представлено возрастающим по направлению к центру градиентом силы, то ноги космонавта подвергнутся заметно большему гравитационному воздействию, чем, например, голова. Тогда за счет гравитации, вернее - приливных сил, ноги будут «падать» быстрее. Таким образом тело начинает постепенно вытягиваться в длину. Для описания подобного явления астрофизики придумали довольно креативный термин - спагеттификация. Дальнейшее растяжение тела, вероятно, разложит его на атомы, которые, рано или поздно достигнут сингулярности. О том, что будет чувствовать человек в данной ситуации - остается только гадать. Стоит отметить, что эффект растяжения тела обратно пропорционален массе черной дыры. То есть если ЧД с массой трех Солнц мгновенно растянет/разорвет тело, то сверхмассивная черная дыра будет иметь меньшие приливные силы и, есть предположения, что некоторые физические материалы могли бы «стерпеть» подобную деформацию, не потеряв свою структуру.

Как известно, вблизи массивных объектов время течет медленней, а значит время для космонавта-смертника будет течь значительно медленней, чем для землян. В таком случае, возможно, он переживет не только своих друзей, но и саму Землю. Для определения того, насколько замедлится время для космонавта потребуются расчеты, однако из вышесказанного можно предположить, что космонавт будет падать в ЧД очень медленно и, возможно, просто не доживет до того момента, когда его тело начнет деформироваться.

Примечательно, что для наблюдателя снаружи все тела, подлетевшие к горизонту событий, так и останутся у края этого горизонта до тех пор, пока не пропадет их изображение. Причиной подобного явления является гравитационное красное смещение. Несколько упрощая, можно сказать, что свет, падающий на тело космонавта-смертника «застывшего» у горизонта событий будет менять свою частоту в связи с его замедленным временем. Так как время идет медленней, то частота света будет уменьшаться, а длина волны - увеличиваться. В результате этого явления, на выходе, то есть для внешнего наблюдателя, свет постепенно будет смещаться в сторону низкочастотного - красного. Смещение света по спектру будет иметь место, так как космонавт-смертник все более удаляется от наблюдателя, хоть и практически незаметно, и его время течет все медленней. Таким образом свет, отражаемый его телом, вскоре выйдет за пределы видимого спектра (пропадет изображение), и в дальнейшем тело космонавта можно будет уловить лишь в области инфракрасного излучения, позже - в радиочастотном, и в итоге излучение и вовсе будет неуловимо.

Несмотря на написанное выше, предполагается, что в очень больших сверхмассивных черных дырах приливные силы не так сильно изменяются с расстоянием и почти равномерно действуют на падающее тело. В таком случае падающий космический корабль сохранил бы свою структуру. Возникает резонный вопрос - а куда ведет черная дыра? На этот вопрос могут ответить работы некоторых ученых, связывающий два таких явления как кротовые норы и черные дыры.

Еще в 1935-м году Альберт Эйнштейн и Натан Розен с учетом выдвинули гипотезу о существовании так называемых кротовых нор, соединяющий две точки пространства-времени путем в местах значительного искривления последнего - мост Эйнштейна-Розена или червоточина. Для столь мощного искривления пространства потребуются тела с гигантской массой, с ролью которых отлично справились бы черные дыры.

Мост Эйнштейна-Розена - считается непроходимой кротовой норой, так как имеет небольшие размеры и является нестабильной.

Проходимая кротовая дыра возможно в рамках теории черных и белых дыр. Где белая дыра является выходом информации, попавшей в черную дыру. Белая дыра описывается в рамках ОТО, однако на сегодня остается гипотетической и не была обнаружена. Еще одна модель кротовой норы предложена американскими учеными Кипом Торном и его аспирантом — Майком Моррисом, которая может быть проходимой. Однако, как в случае с червоточиной Морриса — Торна, так и в случае с черными и белыми дырами для возможности путешествия требуется существование так называемой экзотической материи, которая имеет отрицательную энергию и также остается гипотетической.

Черные дыры во Вселенной

Существование черных дыр подтверждено относительно недавно (сентябрь 2015 г.), однако до того времени существовал уже немалый теоретический материал по природе ЧД, а также множество объектов-кандидатов на роль черной дыры. Прежде всего следует учесть размеры ЧД, так как от них зависит и сама природа явления:

  • Черная дыра звездной массы . Такие объекты образуются в результате коллапса звезды. Как уже упоминалось ранее, минимальная масса тела, способного образовать такую черную дыру составляет 2.5 - 3 солнечных масс.
  • Черные дыры средней массы . Условный промежуточный тип черных дыр, которые увеличились за счет поглощения близлежащих объектов, вроде скопления газа, соседней звезды (в системах двух звезд) и других космических тел.
  • Сверхмассивная черная дыра . Компактные объекты с 10 5 —10 10 масс Солнца. Отличительными свойствами таких ЧД является парадоксально невысокая плотность, а также слабые приливные силы, о которых говорилось ранее. Именно такая сверхмассивная черная дыра в центре нашей галактики Млечного пути (Стрелец А*, Sgr A*), а также большинстве других галактик.

Кандидаты в ЧД

Ближайшая черная дыра, а вернее кандидат на роль ЧД - объект (V616 Единорога), который расположен на расстоянии 3000 световых лет от Солнца (в нашей галактике). Он состоит из двух компонент: звезды с массой в половину солнечной массы, а также невидимого тела малых размеров, масса которого составляет 3 - 5 масс Солнца. Если данный объект окажется небольшой черной дырой звездной массы, то по праву стане ближайшей ЧД.

Следом за этим объектом второй ближайшей черной дырой является объект Лебедь X-1 (Cyg X-1), который был первым кандидатом на роль ЧД. Расстояние до него примерно 6070 световых лет. Достаточно хорошо изучен: имеет массу в 14.8 масс Солнца и радиус горизонта событий около 26 км.

По некоторым источником еще одним ближайшим кандидатом на роль ЧД может быть тело в звездной системе V4641 Sagittarii (V4641 Sgr), которая по оценкам 1999-го года располагалась на расстоянии 1600 световых лет. Однако, последующие исследования увеличили это расстояние как минимум в 15 раз.

Сколько черных дыр в нашей галактике?

На этот вопрос нет точного ответа, так как наблюдать их довольно непросто, и за все время исследования небосвода ученым удалось обнаружить около десятка черных дыр в пределах Млечного Пути. Не предаваясь расчетам, отметим, что в нашей галактике около 100 - 400 млрд звезд, и примерно каждая тысячная звезда имеет достаточно массы, чтобы образовать черную дыру. Вероятно, что за время существования Млечного Пути могли образоваться миллионы черных дыр. Так как зарегистрировать проще черные дыры огромных размеров, то логично предположить, что скорее всего большинство ЧД нашей галактики не являются сверхмассивными. Примечательно, что исследования НАСА 2005-го года предполагают наличие целого роя черных дыр (10-20 тысяч), вращающихся вокруг центра галактики. Кроме того, в 2016-м году японские астрофизики обнаружили массивный спутник вблизи объекта * — черная дыра, ядро Млечного Пути. В силу небольшого радиуса (0,15 св. лет) этого тела, а также его огромной массы (100 000 масс Солнца) ученые предполагают, что данный объект тоже является сверхмассивной черной дырой.

Ядро нашей галактики, черная дыра Млечного Пути (Sagittarius A*, Sgr A* или Стрелец А*) является сверхмассивной и имеет массу 4,31·10 6 масс Солнца, а радиус — 0,00071 световых лет (6,25 св. ч. или 6,75 млрд. км). Температура Стрельца А* вместе со скоплением около него составляет около 1·10 7 K.

Самая большая черная дыра

Самая большая черная дыра во Вселенной, которую ученым удалось обнаружить - сверхмассивная черная дыра, FSRQ блазар, в центре галактики S5 0014+81, на расстоянии 1.2·10 10 световых лет от Земли. По предварительным результатам наблюдения, при помощи космической обсерватории Swift, масса ЧД составила 40 миллиардов (40·10 9) солнечных масс, а радиус Шварцшильда такой дыры - 118,35 миллиард километров (0,013 св.лет). Кроме того, согласно подсчетам, она возникла 12,1 млрд лет назад (спустя 1,6 млрд. лет после Большого взрыва). Если данная гигантская черная дыра не будет поглощать окружающую ее материю, то доживет до эры черных дыр - одна из эпох развития Вселенной, во время которой в ней будут доминировать черные дыры. Если же ядро галактики S5 0014+81 продолжит разрастаться, то оно станет одной из последних черных дыр, которые будут существовать во Вселенной.

Другие две известные черные дыры, хоть и не имеющие собственных названий, имеют наибольшее значение для исследования черных дыр, так как подтвердили их существование экспериментально, а также дали важные результаты для изучения гравитации. Речь о событии GW150914, которым названо столкновение двух черных дыр в одну. Данное событие позволило зарегистрировать .

Обнаружение черных дыр

Прежде, чем рассматривать методы обнаружения ЧД, следует ответить на вопрос — почему черная дыра черная? - ответ на него не требует глубоких познаний в астрофизике и космологии. Дело в том, что черная дыра поглощает все падающее на нее излучение и совсем не излучает, если не брать во внимание гипотетическое . Если рассмотреть данный феномен подробнее, можно предположить, что внутри черных дыр не протекают процессы, приводящие к высвобождению энергии в виде электромагнитного излучения. Тогда если ЧД и излучает, то в спектре Хокинга (который совпадает со спектром нагретого, абсолютно черного тела). Однако, как было сказано ранее, данное излучение не было зарегистрировано, что позволяет предположить о совершенно низкой температуре черных дыр.

Другая же общепринятая теория говорит о том, что электромагнитное излучение и вовсе не способно покинуть горизонт событий. Наиболее вероятно, что фотоны (частицы света) не притягиваются массивными объектами, так как согласно теории - сами не имеют массы. Однако, черная дыра все же «притягивает» фотоны света посредством искажения пространства-времени. Если представить ЧД в космосе в виде некой впадины на гладкой поверхности пространства-времени, то существует некоторое расстояние от центра черный дыры, приблизившись на которое к ней свет уже не сможет отдалиться. То есть грубо говоря, свет начинает «падать» в «яму», которая даже не имеет «дна».

В дополнение к этому, если учесть эффект гравитационного красного смещения, то возможно в черной дыре свет теряет свою частоту, смещаясь по спектру в область низкочастотного длинноволнового излучения, пока вовсе не утратит энергию.

Итак, черная дыра имеет черный цвет и потому ее сложно обнаружить в космосе.

Методы обнаружения

Рассмотрим методы, которые астрономы используют для обнаружения черной дыры:


Помимо упомянутых выше методов, ученые часто связывают такие объекты как черные дыры и . Квазары - некие скопления космических тел и газа, которые являются одними из самых ярких астрономических объектов во Вселенной. Так как они обладают высокой интенсивностью свечения при относительно малых размерах, есть основания предполагать, что центром этих объектов есть сверхмассивная черная дыра, притягивающая к себе окружающую материю. В силу столь мощного гравитационного притяжения притягиваемая материя настолько разогрета, что интенсивно излучает. Обнаружение подобных объектов обычно сопоставляется с обнаружением черной дыры. Иногда квазары могут излучать в две стороны струи разогретой плазмы - релятивистские струи. Причины возникновения таких струй (джет) не до конца ясны, однако вероятно они вызваны взаимодействием магнитных полей ЧД и аккреционного диска, и не излучаются непосредственной черной дырой.

Джет в галактике M87 бьющий из центра ЧД

Подводя итоги вышесказанного, можно представить себе, вблизи: это сферический черный объект, вокруг которого вращается сильно разогретая материя, образуя светящийся аккреционный диск.

Слияние и столкновение черных дыр

Одним из интереснейших явлений в астрофизике является столкновение черных дыр, которое также позволяет обнаруживать такие массивные астрономические тела. Подобные процессы интересуют не только астрофизиков, так как их следствием становятся плохо изученные физиками явления. Ярчайшим примером является упомянутое ранее событие под названием GW150914, когда две черные дыры приблизились настолько, что в результате взаимного гравитационного притяжения слились в одну. Важным следствием этого столкновение стало возникновение гравитационных волн.

Согласно определению гравитационных волн - это такие изменения гравитационного поля, которые распространяются волнообразным образом от массивных движущихся объектов. Когда два таких объекта сближаются - они начинают вращаться вокруг общего центра тяжести. По мере их сближения, их вращение вокруг собственной оси возрастает. Подобные переменные колебания гравитационного поля в некоторый момент могут образовать одну мощную гравитационную волну, которая способна распространиться в космосе на миллионы световых лет. Так на расстоянии 1,3 млрд световых лет произошло столкновение двух черных дыр, образовавшее мощную гравитационную волну, которая дошла до Земли 14 сентября 2015 года и была зафиксирована детекторами LIGO и VIRGO.

Как умирают черные дыры?

Очевидно, чтобы черная дыра перестала существовать, ей понадобится потерять всю свою массу. Однако, согласно ее определению — ничто не может покинуть пределы черной дыры если перешло ее горизонт событий. Известно, что впервые о возможности излучения черной дырой частиц упомянул советский физик-теоретик Владимир Грибов, в своей дискуссии с другим советским ученым Яковом Зельдовичем. Он утверждал, что с точки зрения квантовой механики черная дыра способна излучать частицы посредством туннельного эффекта. Позже при помощи квантовой механики построил свою, несколько иную теорию английский физик-теоретик Стивен Хокинг. Подробнее о данном явлении Вы можете прочесть . Кратко говоря, в вакууме существуют так называемые виртуальные частицы, которые постоянно попарно рождаются и аннигилируют друг с другом, при этом не взаимодействуя с окружающим миром. Но если подобные пары возникнут на горизонте событий черной дыры, то сильная гравитация гипотетически способна их разделить, при этом одна частица упадет внутрь ЧД, а другая отправится по направлению от черной дыры. И так как улетевшая от дыры частица может быть наблюдаема, а значит обладает положительной энергий, то упавшая в дыру частица должна обладать отрицательной энергий. Таким образом черная дыра будет терять свою энергию и будет иметь место эффект, который называется - испарение черной дыры.

Согласно имеющимся моделям черной дыры, как уже упоминалось ранее, с уменьшением ее массы ее излучение становится все интенсивнее. Тогда на завершающем этапе существования ЧД, когда она, возможно, уменьшится до размеров квантовой черной дыры, она выделит огромное количество энергии в виде излучения, что может быть эквивалентно тысячам или даже миллионам атомных бомб. Данное событие несколько напоминает взрыв черной дыры, словно той же бомбы. Согласно подсчетам, в результате Большого взрыва могли зародиться первичные черные дыры, и те из них, масса которых порядка 10 12 кг, должны были бы испариться и взорваться примерно в наше время. Как бы то ни было, подобные взрывы ни разу не были замечены астрономами.

Несмотря на предложенный Хокингом механизм уничтожения черных дыр, свойства излучения Хокинга вызывают парадокс в рамках квантовой механики. Если черная дыра поглощает некоторое тело, а после теряет массу, возникшую в результате поглощения этого тела, то независимо от природы тела, черная дыра не будет отличаться от той, которой она была до поглощения тела. При этом информация о теле навсегда утеряна. С точки зрения теоретических расчетов преобразование исходного чистого состояния в полученное смешанное («тепловое») не соответствует нынешней теории квантовой механики. Этот парадокс иногда называют исчезновением информации в чёрной дыре. Доподлинное решение данного парадокса так и не было найдено. Известные варианты решения парадокса:

  • Не состоятельность теории Хокинга. Это влечет за собой невозможность уничтожения черной дыры и постоянный ее рост.
  • Наличие белых дыр. В таком случае поглощаемая информация не пропадает, а просто выбрасывается в другую Вселенную.
  • Не состоятельность общепринятой теории квантовой механики.

Нерешенный проблемы физики черных дыр

Судя по всему, что было описано ранее, черные дыры хоть и изучаются относительно долгое время, все же имеют множество особенностей, механизмы которых до сих пор не известен ученым.

  • В 1970-м году английский ученый сформулировал т.н. «принцип космической цензуры» — «Природа питает отвращение к голой сингулярности». Это означает, что сингулярность образуется только в скрытых от взора местах, как центр черной дыры. Однако, доказать данный принцип пока не удалось. Также существуют теоретические расчеты, согласно которым «голая» сингулярность может возникать.
  • Не доказана и «теорема об отсутствии волос», согласно которой черные дыры имеют всего три параметра.
  • Не разработана полная теория магнитосферы черной дыры.
  • Не изучена природа и физика гравитационной сингулярности.
  • Доподлинно неизвестно, что происходит на завершающем этапе существования черной дыры, и что остается после ее квантового распада.

Интересные факты о черных дырах

Подводя итоги вышесказанного можно выделить несколько интересных и необычных особенностей природы черных дыр:

  • ЧД имеют всего три параметра: масса, электрический заряд и момент импульса. В результате такого малого количества характеристик этого тела, теорема утверждающие это, называется «теоремой об отсутствии волос» («no-hair theorem»). Отсюда также возникла фраза «у черной дыры нет волос», которая обозначает, что две ЧД абсолютно идентичны, упомянутые их три параметра одинаковы.
  • Плотность ЧД может быть меньше плотности воздуха, а температура близкая к абсолютному нулю. Из этого можно предположить, что образование черной дыры происходит не по причине сжатия вещества, а в результате накопление большого количества материи в некотором объеме.
  • Время для тел, поглощенных ЧД, идет значительно медленней, чем для внешнего наблюдателя. Кроме того, поглощенные тела значительно растягиваются внутри черной дыры, что было названо учеными - спагеттификацией.
  • В нашей галактике может быть около миллиона черных дыр.
  • Вероятно, в центре каждой галактики располагается сверхмассивная черная дыра.
  • В будущем, согласно теоретической модели, Вселенная достигнет так называемой эпохи черных дыр, когда ЧД станут доминирующими телами во Вселенной.

Сверхмассивное тело в четыре миллиона солнечных масс обнаружено вблизи центра нашей Галактики. Правда, оно невидимо, неслышимо и неосязаемо.

Пальцем в небо?

Группа немецких физиков из Института внеземной физики имени Макса Планка не так давно сделали сенсационное заявление: ими получены доказательства того, что в нашей Галактике находится черная дыра.
- Около двадцати лет мы наблюдаем за движением нескольких десятков звезд вблизи центра Галактики, находящегося на расстоянии 27 тыс. световых лет от Солнца, -говорит руководитель группы Рейнхард Гензель. - Орбиты этих звезд говорят о том, что расположенная в центре концентрация массы, вне всякого сомнения, является черной дырой.
Не угрожает ли это нашей Галактике? Не съест ли космическое чудовище Землю?
Оказалось, что пока ответов на эти вопросы нет. По словам директора Государственного астрономического института им. П. К. Штернберга МГУ члена-корреспондента РАН Анатолия Черепащука, наблюдая за орбитами, черную дыру вычислить нельзя.
- Чтобы доказать, что тело, находящееся в центре нашей Галактики, представляет собой черную дыру, нужно сделать две вещи, -пояснил ученый журналистам. -Во-первых, экспериментально показать, что радиус этого тела равен так называемому гравитационному радиусу для черной дыры данной массы (а для черного тела в четыре миллиона солнечных масс он равен примерно семи солнечным радиусам). И, во-вторых, доказать, что это тело не имеет твердой поверхности, а вместо нее - горизонт событий.
По словам Черепащука, обе эти задачи в принципе выполнимы, и лет через 20, как он надеется, ученые смогут точно сказать, черная это дыра или нет.
В общем, вопрос: быть или не быть нашей Галактике, - откладывается на два десятилетия. А пока познакомимся поближе с этим монстром.

Самое гиблое место

Нет в космосе более загадочного и пугающего объекта, чем черная дыра. Одно словосочетание уже наводит безотчетный страх: оно рисует образ всепоглощающей бездны. Перед нею робеют не только обыватели, но трепещут и астрофизики. «Из всех творений человеческого разума: от мифологических единорогов и драконов до водородной бомбы, пожалуй, наиболее фантастическое - это черная дыра. Дыра в пространстве с вполне конкретными краями, в которую может провалиться все что угодно и из которой ничто не в силах выбраться. Дыра, в которой гравитационная сила столь велика, что даже свет захватывается и удерживается в этой ловушке. Дыра, которая искривляет пространство и искажает течение времени. Подобно единорогам и драконам черные дыры кажутся, скорее, атрибутами научной фантастики или древних мифов, чем реальными объектами. Однако из физических законов с неизбежностью следует существование черных дыр. В одной нашей Галактике их, возможно, миллионы», - так сказал о черных дырах известный ученый, заведующий кафедрой Калифорнийского технологического института (США), член Национальной академии наук США, член ученого совета NASA Кип Стивен Торн.
Помимо своей фантастической мощи черные дыры обладают удивительным свойством менять внутри себя пространство и время. Они сначала закручиваются в своеобразную воронку, а потом, перейдя некую границу в глубине дыры, распадаются на кванты. Внутри же черной дыры, за краем этой своеобразной гравитационной бездны, откуда нет выхода, текут удивительные физические процессы, проявляются новые законы природы.
По мнению многих специалистов, черные дыры являются самыми грандиозными источниками энергии во Вселенной. Мы, вероятно, наблюдаем их в далеких квазарах, во взрывающихся ядрах галактик. Предполагается, что черные дыры в будущем станут источниками энергии для человечества.

Конец света находится здесь

Как же образуются черные дыры? По словам астрофизиков, большинство из них возникает после смерти больших звезд. Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая. Но если масса вещества, оставшегося после взрыва, все еще превосходит две солнечные, то звезда должна сжаться в крошечное плотное тело, так как гравитационные силы всецело подавляют всякое внутреннее сопротивление сжатию. Ученые полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению черной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остается один неизбежный путь - путь всеобщего и полного сжатия, превращающего ее в невидимую черную дыру.

А почему они невидимы?

Само название «черные дыры» говорит о том, что это класс объектов, которые нельзя увидеть, - объясняет заведующий отделом радиоастрономии Государственного астрономического института им. Штернберга кандидат физико-математических наук Валентин Есипов. - Их гравитационное поле настолько сильно, что если бы каким-то путем удалось оказаться вблизи черной дыры и направить в сторону от ее поверхности луч самого мощного прожектора, то увидеть этот прожектор нельзя было бы даже с расстояния, не превышающего расстояние от Земли до Солнца.
Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля черной дыры и покинуть ее поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу черной дыры. А что там прячется, за границей?

Прогуляемся до Ада

Самое интересное описание «нутра» черной дыры принадлежит уже упоминавшемуся нами американскому физику и астроному Кипу Стивену Торну. «Вообразите себя капитаном большого космического корабля звездного класса. -предлагает ученый в своей книге «Путешествие среди черных дыр». - По заданию Географического общества вам предстоит исследовать несколько черных дыр, находящихся на больших расстояниях друг от друга в межзвездном пространстве, и с помощью радиосигналов передать на Землю описание своих наблюдений,
Пробыв в пути 4 года и 8 месяцев, ваш корабль тормозит в окрестностях ближайшей к Земле черной дыры, получившей название Гадес (Ад) и расположенной вблизи звезды Веги. На телеэкране заметно присутствие черной дыры: атомы водорода, рассеянные в межзвездном пространстве, втягиваются внутрь ее гравитационным полем. Везде вы видите их движение: медленное вдали от дыры и все более быстрое по мере приближения к ней. Это напоминает падение воды в Ниагарском водопаде за исключением того, что атомы падают не только с востока, но и с запада, севера, юга, сверху и снизу - отовсюду. Если вы ничего не предпримете, то тоже окажетесь втянуты внутрь.
Итак, вам предстоит с величайшей осторожностью перевести звездолет с траектории свободного падения на круговую орбиту вокруг черной дыры (подобную орбитам искусственных спутников, вращающихся вокруг Земли) так, чтобы центробежная сила вашего орбитального движения компенсировала силу притяжения черной дыры. Почувствовав себя в безопасности, вы включаете двигатели корабля и готовитесь к изучению черной дыры.
Прежде всего в телескопы вы наблюдаете электромагнитное излучение, испускаемое падающими атомами водорода. Вдали от черной дыры они настолько холодные, что излучают лишь радиоволны. Но ближе к дыре, там, где атомы падают быстрее, они время от времени сталкиваются между собой, нагреваются до нескольких тысяч градусов и начинают излучать свет. Еще ближе к черной дыре, двигаясь гораздо быстрее, они разогреваются за счет столкновений до нескольких миллионов градусов и испускают рентгеновское излучение.
Направляя свои телескопы «внутрь» и продолжая приближаться к черной дыре, вы «увидите» гамма-лучи, испускаемые атомами водорода, нагретыми до еще более высоких температур. И наконец, в самом центре вы обнаружите темный диск самой черной дыры.
Следующий ваш шаг - тщательно измерить длину орбиты корабля. Это приблизительно 1 млн. км, или половина длины орбиты Луны вокруг Земли. Затем вы смотрите на далекие звезды и видите, что они перемещаются подобно вам. Наблюдая за их видимым движением, вы выясняете, что вам необходимо 5 мин. 46 с, чтобы совершить один оборот вокруг черной дыры. Это и есть ваш «орбитальный период».
Зная период обращения и длину своей орбиты, вы можете рассчитать массу черной дыры Гадес (Ад). Она будет в 10 раз больше солнечной. Это, по-существу, полная масса, скопившаяся в черной дыре за всю ее историю и включающая массу звезды, в результате коллапса которой около 2 млрд. лет назад образовалась черная дыра, массу всего межзвездного водорода, втянутого в нее с момента ее рождения, а также массу всех астероидов и заблудившихся звездолетов, упавших на нее.
Наиболее интересны свойства ее поверхности, или горизонта - границы, из-за которой все, что падает в дыру, уже не может вернуться. Границы, из-за которой не выбраться звездолету и даже любому виду излучения: радиоволнам, свету, рентгеновским или гамма-лучам...
Хотя по массе и моменту количества движения черной дыры вы в состоянии вычислить все ее свойства снаружи, вы не можете ничего узнать о ее внутренности. Она может иметь неупорядоченную структуру и быть сильно несимметричной. Все это будет зависеть от деталей коллапса, в результате которого образовалась черная дыра, а также от особенностей последующего втягивания межзвездного водорода, Так что диаметр дыры просто нельзя вычислить.
Получив эти результаты, вы можете исследовать окрестности горизонта черной дыры...
Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите, -продолжает физик Торн. - Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель - выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается - от 1 млн. км до 500 тыс., потом до 100 тыс., 90 тыс., 80 тыс. И тут начинает твориться что-то странное.
Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами - к черной дыре, а головой - к орбите вашего корабля и звездам. Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх - за голову. Вы соображаете, что причина - притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. км над черной дырой, вы ощущаете эту разницу вполне отчетливо - различие в притяжении составит 1/8 земной силы тяжести (1/8 g). Центробежная сила, обусловленная вашим движением по орбите, компенсирует притяжение дыры в центральной точке вашего тела, позволяя свободно парить в невесомости, но на ваши ноги будет действовать избыточное притяжение 1/16 g, голова же, наоборот, будет притягиваться слабо, и центробежная сила потянет ее вверх в точности с тем же дополнительным ускорением -1/16 g.
Несколько озадаченный, вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. км разность составит 1/4 g, при 51 тыс. км -1/2 g и при 40 тыс. км она достигнет полного земного веса. Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс. км сила растяжения составит 4 д, т.е. вчетверо превысит ваш вес в земных условиях, а при 16 тыс. км -16 g. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться - снова вытянут вертикально (вдоль радиального по отношению к черной дыре направления).
Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит - его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды...
Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета».
Изложенная Торном история звучит пока как фантастика. И рассчитана на то время, когда человек добьется таких успехов в развитии техники и технологии, что станут реальностью межгалактические полеты и конструирование кольцевых миров вокруг черных дыр. А по самым оптимистичным прогнозам футурологов, это станет возможным не ранее, чем через 50 лет.

Нет, ребята, все не так...

Надо признаться, что многие ученые до сих пор отрицают существование черных дыр. Ведь их открытие и изучение происходит на кончике пера. А недавно появилось еще более неожиданное предположение, что черные дыры - вовсе не дыры вообще, а некие объекты, более родственные по природе пузырькам конденсата Бозе-Эйнштейна (агрегатное состояние материи, основу которой составляют бозоны, охлажденные до температур, близких к абсолютному нулю). Эту новую гипотезу выдвинули исследователь Эмиль Моттола из Теоретического Отделения Los Alamos National Laboratory вместе с соавтором Павелом Мазуром из Университета Штата Южная Каролина в США.
Объяснение исследователей вносит кардинально новый взгляд на природу черных дыр, которые представляются не как «дыры» в космосе, где вещество и свет необъяснимо исчезают в зоне горизонта событий, а скорее как сферические пустоты, окруженные особой формой вещества никогда прежде не известного на Земле. Мазур и Моттола называют эти объекты не черными дырами, а гравитационными звездами.
Внутри гравитационной звезды пространство и время меняются местами, как и в модели черной дыры.
Моттола и Мазур даже высказывают предположение, что Вселенная, в которой мы живем, может быть внутренней оболочкой гигантской гравитационной звезды.Автор: С.Кузьмина

Космос таит в множество загадок. Черная дыра — одно из самых поразительных космических явлений. Несмотря на то, что оно пока мало изучено, ученые обнаружили ряд интересных фактов о черных дырах.

Space holds many mysteries. One of the most fascinating of these is black holes. Although there are still many unanswered questions about black holes, scientists have discovered many interesting things about them.

Почему черные дыры – черные?

Черные дыры не отражают свет, а цвет, в свою очередь, является результатом отражения света. Этот феномен имеет естественную природу, поэтому мы воспринимаем различные объекты в красном, голубом или зеленом цвете.

Why do black holes appear black?

Color is an effect of light reflection – a natural phenomenon. It is why we perceive some things as red, some as blue, and others as green. Black holes do not reflect light.

Почему черные дыры являются дырами?

Гравитация помогает нам ходить по Земле, на Луне же она в 6 раз слабее. Вот почему мы наблюдаем, как астронавты «зависают» в воздухе. В черных дырах очень мощная гравитация; настолько мощная, что предмет может исчезнуть, попав в них.

Why are they holes?

On Earth, gravity helps us stay grounded. On the moon, for example, there is very low gravity. That is astronauts can jump very high on the moon. Black holes have very strong gravity – so strong that no object can escape being sucked into it.

Как появились черные дыры?

Фактически, черные дыры являются погасшие звездами. Однако, черными дырами становятся только те из звёзд, масса которых после взрыва превышает массу Солнца. Не волнуйтесь: Солнце, звезда в центре нашей солнечной системы, не превратится в черную дыру.

How do black holes come into existence?

One way black holes form is from gravitational collapse. When stars run out of fuel, they die, collapsing in on themselves. If these stars have a very large mass, they form black holes.

Существует ли способ, который позволит заметить черную дыру?

За черными дырами очень тяжело наблюдать, потому что они не отражают свет. Однако, ученым удалось найти несколько решений этой проблемы: черную дыру можно заметить, когда в нее попадают частицы, в этот момент выделяется много энергии; также её можно обнаружить по движению объектов вокруг чёрной дыры, так как орбиты объектов изменятся.

Is there any way to spot a black hole?

Because they do not reflect light, black holes are very difficult to observe. But scientists have found a solution. Black holes can be noticed when particles fall into them. Because a lot of energy is created when this happens, it can be detected. Black holes can also be discovered by observing the movement of other objects around them. The direction of their orbit changes when they are near a black hole.

Меняются ли черные дыры в размере?

Да, меняются. Существует четыре типа черных дыр: маленькие, звездные, промежуточной массы и сверхмассивные.

Если черные дыры притягивают другие звезды или сливаются с другими черными дырами, они становятся просто огромными. Такие гиганты называются сверхмассивными черными дырами. Ученые утверждают, что в центре Млечного Пути нашей галактики находится такая сверхмассивная черная дыра.

Do black holes differ in size?

Yes, they do. There are four types of black holes: micro, stellar, intermediate mass and supermassive. If black holes attract many stars or combine with other black holes, they become very big. These are called supermassive black holes. Scientists say there is a supermassive black hole at the center of the Milky Way, our galaxy.

Могут ли черные дыры исчезнуть?

Ученые считают, что черные дыры очень медленно “испаряются”, излучая частитцы. Но происходит это так медленно, что увидеть это пока не удалось.

Can black holes disappear?

A theory claims that yes, they can disappear due to radiation. But this has not been proven yet.

Нам еще так много не известно о космосе, и ученые активно работают над открытием новых интересных фактов. Возможно, именно ты станешь тем ученым, который ответит на все вопросы о космосе!

There are many things we don’t know about space, and scientists are still working on discovering new and interesting things. Maybe you will become a scientist and be the one to find answers to these questions!