Все теоремы пифагора. Способы доказательства теоремы Пифагора. Самый простой способ доказать теорему Пифагора. Отзывы

Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).

Пусть дан прямоугольный треугольник, стороны которого а , b и с (рис. 267).

Построим на его сторонах квадраты. Площадиэтих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М’К’О’Р’ (рис. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на риунках 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый изкоторых равен прямоугольному треугольнику АВС. Квадрат М’К’О’Р’ разбился на четырёхугольник (он на рисунке 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые ∠1 + ∠2 = 90°, откуда ∠3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на рисунке 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на рисунке 269 этот квадрат тоже заштрихован), равна площади квадрата М’К’О’Р’, равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;

b 2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.

Например:

а) если даны катеты а = 4 см, b = 3 см, то можно найти гипотенузу (с ):

с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 = 5(см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках ABC и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,

то катет а треугольника ABC меньше катета а 1 треугольника А 1 В 1 C 1 .

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,

а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,

т. е. а 2 а 1 2 . Откуда а а 1 .

Г. Глейзер,
академик РАО, Москва

О теореме Пифагора и способах ее доказательства

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах...

Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Мне кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думаю, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.

Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.

Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует из рис. 1.

С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.

Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков.

Доказательство Пифагора

";Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах. "; Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямо­угольного треугольника. Вероятно, с него и на­чиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для DАВС: квадрат, построенный на гипо­тенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катететах по два. Теорема доказана.

Доказательства, основанные на использовании понятия равновеликости фигур.

При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

Аддитивные доказательства.

Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

Здесь: ABC – прямоугольный треугольник с прямым углом C; CMN; CKMN; PO||MN; EF||MN.

Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

Докажите теорему с помощью этого разбиения.

 На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).

 Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.

 Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

Доказательства методом достроения.

Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь CEP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

На рис. 8 Пифагорова фигура достроена до прямоугольника, стороны которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.

Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

KLOA = ACPF = ACED = a 2 ;

LGBO = CBMP = CBNQ = b 2 ;

AKGB = AKLO + LGBO = c 2 ;

отсюда c 2 = a 2 + b 2 .

OCLP = ACLF = ACED = b 2 ;

CBML = CBNQ = a 2 ;

OBMP = ABMF = c 2 ;

OBMP = OCLP + CBML;

c 2 = a 2 + b 2 .

Алгебраический метод доказательства.

Рис. 12 иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.

Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.

На рис. 13 ABC – прямоугольный, C – прямой угол, CMAB, b 1 – проекция катета b на гипотенузу, a 1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

Из того, что ABC подобен ACM следует

b 2 = cb 1 ; (1)

из того, что ABC подобен BCM следует

a 2 = ca 1 . (2)

Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb 1 + ca 1 = c(b 1 + a 1) = c 2 .

Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

Доказательство Мёльманна (рис. 14).
Площадь данного прямоугольного треугольника, с одной стороны, равна с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем:

откуда следует, что c 2 =a 2 +b 2 .

во втором

Приравнивая эти выражения, получаем теорему Пифагора.

Комбинированный метод

Равенство треугольников

c 2 = a 2 + b 2 . (3)

Сравнивая соотношения (3) и (4), получаем, что

c 1 2 = c 2 , или c 1 = c.

Таким образом, треугольники – данный и построенный – равны, так как имеют по три соответственно равные стороны. Угол C 1 прямой, поэтому и угол C данного треугольника тоже прямой.

Древнеиндийское доказательство.

Матема­тики Древней Индии заметили, что для доказа­тельства теоремы Пифагора достаточно исполь­зовать внутреннюю часть древнекитайского чер­тежа. В написанном на пальмовых листьях трак­тате «Сиддханта широмани» («Венец знания») крупнейшего индийского математика ХП в. Бха-скары поме­щен чертеж (рис. 4)

характерным для индийских доказательств l словом «смотри!». Как видим, прямоугольнь-ные треугольники уложены здесь гипотенузой наружу и квадрат с 2 перекладывается в «крес­ло невесты» с 2 2 . Заметим, что частные слу­чаи теоремы Пифагора (например, построение квадрата, площадь которого вдвое больше рис.4 площади данного квадрата) встречаются в древнеиндийском трактате ";Сульва";

Решили прямоугольный треугольник и квадраты, построенные на его катетах, или, иначе, фигуры, составленные из 16 одинаковых равнобедренных прямоугольных треугольников и потому укладывающиеся в квадрат. Такова лили. малая толика богатств, скрытых в жемчужине античной математики - теореме Пифагора.

Древнекитайское доказательство.

Математические трактаты Древнего Китая дошли до нас в редакции П в. до н.э. Дело в том, что в 213 г. до н.э. китайский император Ши Хуан-ди, стремясь ликвидировать прежние традиции, приказал сжечь все древние книги. Во П в. до н.э. в Китае была изобретена бумага и одно­временно начинается воссоздание древних книг.Главное из сохранивших­ся астрономических сочинений - в книге «Математика» помещен чертеж (рис. 2, а), доказы­вающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. В самом деле, на древне­китайском чертеже четыре равных прямоугольных треугольника с кате­тами a, b и гипотенузой с уложены г) так, что их внешний контур образует Рис- 2 квадрат со стороной а+Ь, а внутрен­ний - квадрат со стороной с, построенный на гипотенузе (рис. 2, б). Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника (рис. 2, в), то ясно, что образовавшаяся пустота, с одной стороны, равна С 2 , а с другой - с 2 2 , т.е. c 2=  2 +b 2 . Теорема доказана. Заметим, что при таком доказательстве построения внутри квадрата на гипотенузе, которые мы ви­дим на древнекитайском чертеже (рис. 2, а), не используются. По-видимому, древ­некитайские математики имели другое доказательство. Именно если в квадрате со стороной с два заштрихованных треугольника (рис. 2, б) отрезать и приложить гипотенузами к двум другим гипотенузам (рис. 2, г), то легко обнаружить, что

Полученная фигура, которую иногда называют «креслом невесты», состоит из двух квадратов со сторонами а и Ь, т.е. c 2 == a 2 2 .

На рисунке 3 воспроизведен чертеж из трактата «Чжоу-би...». Здесь теорема Пифагора рассмотрена для египетского треугольника с катетами 3, 4 и гипотену­зой 5 единиц измерения. Квадрат на гипотенузе содержит 25 клеток, а вписанный в него квадрат на большем катете-16. Ясно, что оставшаяся часть содержит 9 клеток. Это и будет квадрат на меньшем катете.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В школьном курсе геометрии с помощью теоремы Пифагора решаются только математические задачи. К сожалению, вопрос о практическом применении теоремы Пифагора не рассматривается.

В связи с этим, целью моей работы было выяснить области применения теоремы Пифагора.

В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

Рассмотрю примеры практического применения теоремы Пифагора. Не буду пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой.

Гипотеза:

С помощью теоремы Пифагора можно решать не только математические задачи.

По данной исследовательской работе определена следующая цель:

Выяснить области применения теоремы Пифагора.

Исходя из вышеназванной цели, были обозначены следующие задачи:

    Собрать информацию о практическом применении теоремы Пифагора в различных источниках и определить области применения теоремы.

    Изучить некоторые исторические сведения о Пифагоре и о его теореме.

    Показать применение теоремы при решении исторических задач.

    Обработать собранные данные по теме.

Я занималась поиском и сбором информации - изучала печатный материал, работала с материалом в интернете, обработкой собранными данными.

Методика исследования:

    Изучение теоретического материала.

    Изучение методик исследования.

    Практическое выполнение исследования.

    Коммуникативный (метод измерения, анкетирование).

Вид проекта: информационно-исследовательский. Работа выполнялась в свободное время.

О Пифагоре .

Пифагор - древнегреческий философ, математик, астроном. Обосновал многие свойства геометрических фигур, разработал математическую теорию чисел и их пропорций. Внёс значительный вклад в развитие астрономии и акустики. Автор «Золотых стихов», основатель пифагорейской школы в Кротоне.

По преданию Пифагор родился около 580 г. до н. э. на острове Самос в богатой купеческой семье. Его мать - Пифазис, получила свое имя в честь Пифии, жрицы Аполлона. Пифия предсказала Мнесарху и его жене появление на свет сына, сын также был назван в честь Пифии. По многим античным свидетельствам мальчик был сказочно красив и вскоре проявил свои незаурядные способности. Первые познания получил от своего отца Мнесарха, ювелира, резчика по драгоценным камням, который мечтал, что сын станет продолжателем его дела. Но жизнь рассудила иначе. Будущий философ обнаружил большие способности к наукам. Среди учителей Пифагора были Ферекид Сиросский и старец Гермодамант. Первый привил мальчику любовь к науке, а второй - к музыке, живописи и поэзии. Впоследствии Пифагор познакомился известным философом - математиком Фалесом Милетским и по его совету отправился в Египет - центр тогдашней научной и исследовательской деятельности. Прожив 22 года в Египте и 12 лет в Вавилоне, он вернулся на остров Самос, затем покинул его по неизвестным причинам и переехал в город Кротон, на юг Италии. Здесь он создал пифагорейскую школу (союз), в которой изучали различные вопросы философии и математики. В возрасте примерно 60 лет Пифагора женился на Феано, одной из своих учениц. У них рождены трое детей, и все они становятся последователями своего отца. Исторические условия того времени характеризуются широким движением демоса против власти аристократов. Спасаясь от волн народного гнева, Пифагор и его ученики переехали в город Тарента. По одной версии: к нему пришел Килон, богатый и злой человек, желая спьяну вступить в братство. Получив отказ, Килон начал борьбу с Пифагором. При пожаре ученики своей ценой спасли жизнь учителю. Пифагор затосковал и вскоре покончил жизнь самоубийством.

Следует отметить, что это один из вариантов его биографии. Точные даты его рождения и смерти не установлены, многие факты его жизни противоречивы. Но ясно одно: этот человек жил, и оставил потомкам большое философское и математическое наследие.

Теорема Пифагора.

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется следующим образом: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Открытие этого утверждения приписывают Пифагору Самосскому (XII в. до н. э.)

Изучение вавилонских клинописных табличек и древних китайских рукописей (копий еще более древних манускриптов) показало, что знаменитая теорема была известна задолго до Пифагора, возможно несколько тысячелетий до него.

(Но есть предположение, что Пифагор дал ее полноценное доказательство)

Но есть и другое мнение: в пифагорейской школе был замечательный обычай приписывать все заслуги Пифагору и несколько не присваивать себе славы первооткрывателей, кроме, может быть нескольких случаев.

(Ямвлих-сирийский грекоязычный писатель, автор трактата «Жизнь Пифагора». (II век н. э)

Так немецкий историк математики Кантор считает, что равенство 3 2 + 4 2= 5 2 было

известно египтянам около 2300 лет до н. э. во времена царя Аменехмета (согласно папирусу 6619 Берлинского музея). Одни полагают, что Пифагор дал теореме полноценное доказательство, а другие отказываю ему в этой заслуге.

Некоторые приписывают Пифагору доказательство, которое Евклид приводил в своих «Началах». С другой стороны Прокл (математик, 5 века) утверждает, что доказательство в «Началах» принадлежало самому Евклиду, то есть история математики почти не сохранила достоверных данных о математической деятельности Пифагора. В математике, пожалуй, не найти никакой другой теоремы, заслуживающей всевозможных сравнений.

В некоторых списках «Начал» Евклида эта теорема назвалась «теоремой нимфы» за сходство чертежа с пчелкой, бабочкой(«теорема бабочки»), что по гречки назвалось нимфой. Этим словом греки назвали еще некоторых богинь, а также молодых женщин и невест. Арабский переводчик не обратил внимания на чертеж и перевел слово «нимфа» как «невеста». Так появилось ласковое название «теорема невесты». Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Отсюда еще одно название- «теорема ста быков».

В англоязычных странах ее назвали: «ветряная мельница», «павлиний хвост», «кресло невесты», «ослиный мост» (если ученик не мог через него «перейти», значит, он был настоящим « ослом»)

В дореволюционной России рисунок теоремы Пифагора для случая равнобедренного треугольника называли «пифагоровыми штанами».

Эти «штаны» появляются, когда на каждой стороне прямоугольного треугольника построить квадраты во внешнюю сторону.

Сколько существует различных доказательств теоремы Пифагора?

Со времен Пифагора их появилось более 350.Теорема попала в Книгу рекордов Гиннеса. Если проанализировать доказательства теоремы, то принципиально различных идей в них используется немного.

Области применения теоремы.

Широкое применение имеет при решении геометрических задач.

Именно с ее помощью, можно геометрически находить значения квадратных корней из целых чисел:

Для этого строим прямоугольный треугольник АОВ (угол А равен 90°) с единичными катетами. Тогда его гипотенуза √2. Затем строим единичный отрезок ВС, ВС перпендикулярен ОВ, длина гипотенузы ОС=√3 и т.д.

(этот способ встречаем у Евклида и Ф. Киренского).

Задачи в курсе физики средней школы требуют знания теоремы Пифагора.

Это задачи связанные со сложением скоростей.

Обратите внимание на слайд: задача из учебника физики 9 класса. В практическом смысле её можно сформулировать так: под каким углом к течению реки должен двигаться катер, осуществляющий перевозку пассажиров между пристанями, чтобы уложиться в расписание?(пристани находятся на противоположных берегах реки)

Когда биатлонист стреляет по мишени, он делает «поправку на ветер». Если ветер дует справа, а спортсмен стреляет по прямой, то пуля уйдёт влево. Чтобы попасть в цель, надо сдвинуть прицел вправо на расстояние смещения пули. Для них составлены специальные таблицы (на основе следствий из т. Пифагора). Биатлонист знает, на какой угол смещать прицел при известной скорости ветра.

Астрономия - также широкая область для применения теоремы Путь светового луча. На рисунке показан путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч - прямой.

Какой путь проходит луч ? Свет идет туда и обратно одинаковый путь. Чему равна половина пути, который проходит луч? Если обозначить отрезок AB символом l , половину времени как t , а также обозначив скорость движения света буквой c , то наше уравнение примет вид

c * t = l

Это ведь произведение затраченного времени на скорость!

Теперь попробуем взглянуть на то же самое явление из другой системы отсчета, например, из космического корабля, пролетающего мимо бегающего луча со скоростью v . При таком наблюдении скорости всех тел изменятся, причем неподвижные тела станут двигаться со скоростью v в противоположную сторону. Предположим, что корабль движется влево. Тогда две точки, между которыми бегает зайчик, станут двигаться вправо с той же скоростью. Причем, в то время, пока зайчик пробегает свой путь, исходная точка A смещается и луч возвращается уже в новую точку C .

Вопрос: на сколько успеет сместиться точка (чтобы превратиться в точку C), пока путешествует световой луч? Точнее: чему равна половина данного смещения? Если обозначить половину времени путешествия луча буквой t" , а половину расстояния AC буквой d , то получим наше уравнение в виде:

v * t" = d

Буквой v обозначена скорость движения космического корабля.

Другой вопрос: какой путь при этом пройдет луч света? (Точнее, чему равна половина этого пути? Чему равно расстояние до неизвестного объекта?)

Если обозначить половину длины пути света буквой s, то получим уравнение:

c * t" = s

Здесь c - это скорость света, а t" - это тоже самое время, которое рассматривали выше.

Теперь рассмотрим треугольник ABC . Это равнобедренный треугольник, высота которого равна l , которое мы ввели при рассмотрении процесса с неподвижной точки зрения. Поскольку движение происходит перпендикулярно l , то оно не могло повлиять не нее.

Треугольник ABC составлен из двух половинок - одинаковых прямоугольных треугольников, гипотенузы которых AB и BC должны быть связаны с катетами по теореме Пифагора . Один из катетов - это d , которое мы рассчитали только что, а второй катет - это s, который проходит свет, и который мы тоже рассчитали.Получаем уравнение:

s 2 = l 2 + d 2

Это ведь теорема Пифагора !

Явление звёздной аберрации, открытое в 1729 году, заключается в том, что все звёзды на небесной сфере описывают эллипсы. Большая полуось этих эллипсов наблюдается с Земли под углом, равным 20,5 градуса. Такой угол связан с движением Земли вокруг Солнца со скоростью 29,8 км в час. Чтобы с движущейся Земли наблюдать звезду, необходимо наклонить трубу телескопа вперёд по движению звезды, так как пока свет проходит длину телескопа, окуляр вместе с землёй перемещается вперёд. Сложение скоростей света и Земли производится векторно, используя т.

Пифагора. U 2 =C 2 +V 2

С-скорость света

V-скорость земли

Труба телескопа

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы, которые долгое время считались искусственными). Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора.

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора, имеет место всюду, и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Мобильная связь

Кто в современном мире не пользуется сотовым телефоном? Каждый абонент мобильной связи заинтересован в ее качестве. А качество в свою очередь зависит от высоты антенны мобильного оператора. Чтобы рассчитать, в каком радиусе можно принимать передачу, применяем теорему Пифагора .

Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.)

Решение:

Пусть AB= x , BC=R=200 км , OC= r =6380 км.

OB=OA+ABOB=r + x.

Используя теорему Пифагора, получим Ответ: 2,3 км.

При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF.

Решение:

Треугольник ADC - равнобедренный AB=BC=4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда:

А) Из треугольника DBC: DB=2,5 м.

Б) Из треугольника ABF:

Окна

В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны

ширине окна (b) для наружных дуг

половине ширины, (b/2) для внутренних дуг

Остается еще полная окружность, касающаяся четырех дуг. Т. к. она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и

положение ее центра.

В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:

(b/4+p) 2 =(b/4) 2 +(b/4-p) 2

b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4 - bp/2 +p 2 ,

Разделив на b и приводя подобные члены, получим:

(3/2)p=b/4, p=b/6.

В лесной промышленности : для потребностей строительства бревна распиливают на брус, при этом главная задача - получить как можно меньше отходов. Наименьшее число отходов будет тогда, когда брус имеет наибольший объем. Что же должно быть в сечении? Как видно из решения сечение должно быть квадратным, а теорема Пифагора и другие рассуждения позволяют сделать такой вывод.

Брус наибольшего объема

Задача

Из цилиндрического бревна надо выпилить прямоугольный брус наибольшего объема. Какой формы должно быть его сечение (рис. 23)?

Решение

Если стороны прямоугольного сечения х и y, то по теореме Пифагора

x 2 + y 2 = d 2 ,

где d - диаметр бревна. Объем бруса наибольший, когда площадь его сечения наибольшая, т. е. когда ху достигает наибольшей величины. Но если ху наибольшее, то наибольшим будет и произведение х 2 y 2 . Так как сумма х 2 + y 2 неизменна, то, по доказанному ранее, произведение х 2 y 2 наибольшее, когда

х 2 = y 2 или х = y.

Итак, сечение бруса должно быть квадратным.

Транспортные задачи (так называемые задачи на оптимизацию; задачи, решение которых позволяет ответить на вопрос: как располагать средствами для достижения большой выгоды)

На первый взгляд ничего особенного: снять размеры высоты от пола до потолка в нескольких точках, отнять несколько сантиметров, чтобы шкаф не упирался в потолок. Поступив так, в процессе сборки мебели могут возникнуть трудности. Ведь сборка каркаса мебельщики выполняют, располагая шкаф в горизонтальном положении, а когда каркас собран, поднимают его в вертикальное положение. Рассмотрим боковую стенку шкафа. Высота шкафа должна быть на 10 см меньше расстояния от пола до потолка при условии, что это расстояние не превышает 2500 мм. А глубина шкафа - 700 мм. Почему на 10 см, а не на 5 см или на 7, и причем здесь теорема Пифагора?

Итак: боковая стенка 2500-100=2400(мм)- максимальная высота конструкции.

Боковая стенка в процессе подъема каркаса должна свободно пройти как по высоте, так и по диагонали. По теореме Пифагора

АС= √ АВ 2 + ВС 2

АС= √ 2400 2 + 700 2 = 2500 (мм)

Что произойдет если высоту шкафа уменьшить на 50 мм?

АС= √ 2450 2 + 700 2 = 2548 (мм)

Диагональ 2548 мм. Значит, шкаф не поставишь (можно испортить потолок).

Молниеотвод.

Известно, что молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту.

По теореме Пифагора h 2 ≥ a 2 +b 2, значит h≥(a 2 +b 2) 1/2

Срочно на дачном участке надо сделать парник для рассады.

Из досок сбит квадрат 1м1м. Имеются остатки пленки размером 1,5м1,5м. На какой высоте в центре квадрата надо закрепить рейку, чтобы плёнка полностью его покрыла?

1)Диагональ парника d==1,4;0,7

2)Диагональ плёнки d 1= 2,12 1,06

3) Высота рейки x= 0,7

Заключение

В результате исследования я выяснила некоторые области применения теоремы Пифагора. Мной собрано и обработано много материала из литературных источников и интернета по данной теме. Я изучила некоторые исторические сведения о Пифагоре и его теореме. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла свое применение в строительстве и архитектуре, мобильной связи, литературе.

Изучение и анализ источников информации о теореме Пифагора

показал, что:

а ) исключительное внимание о стороны математиков и любителей математики к теореме основано на ее простоте, красоте и значимости;

б) теорема Пифагора на протяжении многих веков служит толчком к интересным и важным математическим открытиям (теорема Ферма, теория относительности Эйнштейна);

в ) теорема Пифагора - является воплощением универсального языка математики, справедливого во всем мире;

г ) область применения теоремы достаточно обширная и вообще не может быть указана с достаточной полнотой;

д ) тайны теоремы Пифагора продолжают волновать человечество и поэтому каждому из нас дают шанс быть причастным к их раскрытию.

Библиография

    «Успехи математических наук», 1962, т. 17, № 6 (108).

    Александр Данилович Александров (к пятидесятилетию со дня рождения),

    Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Атанасян Л.С. и др. Геометрия, 10 - 11 кл. - М.: Просвещение, 1992.

    Владимиров Ю.С. Пространство - время: явные и скрытые размерности. - М.: «Наука», 1989.

    Волошин А.В. Пифагор. - М.: Просвещение, 1993.

    Газета «Математика», № 21, 2006.

    Газета «Математика», № 28, 1995.

    Геометрия: Учеб. Для 7 - 11 кл. сред.шк./ Г.П. Бевз, В.Г. Бевз, Н.Г. Владимирова. - М.: Просвещение, 1992.

    Геометрия: Учеб.для 7 - 9 кл. общеобразоват. Учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - 6-е изд. - М.: Просвещение, 1996.

    Глейзер Г.И. История математики в школе: IX - Xкл. Пособие для учителей. - М.: Просвещение, 1983.

    Дополнительные главы к школьному учебнику 8 кл.: Учебное пособие для учащихся шк. и классов с углубл. изуч. математики /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 1996.

    Еленьский Щ. По следам Пифагора. М., 1961.

    Киселёв А.П., Рыбкин Н.А. Геометрия: Планиметрия: 7 - 9 кл.: Учебник и задачник. - М.: Дрофа, 1995.

    Клайн М. Математика. Поиск истины: Перевод с англ. / Под ред. и предисл. В.И. Аршинова, Ю.В. Сачкова. - М.: Мир, 1998.

    Литурман В. Теорема Пифагора. - М., 1960.

    Математика: Справочник школьника и студента / Б. Франк и др.; Перевод с нем. - 3-е изд., стереотип. - М.: Дрофа, 2003.

    Пельтуер А. Кто вы Пифагор? - М.: Знание - сила, № 12, 1994.

    Перельман Я. И. Занимательная математика. - М.: «Наука», 1976.

    Пономарёва Т.Д. Великие учёные. - М.: ООО «Издательство Астрель», 2002.

    Свешникова А. Путешествие в историю математики. - М., 1995.

    Семёнов Е.Е. Изучаем геометрию: Кн. Для учащихся 6 - 8 кл. сред.шк. - М.: Просвещение, 1987.

    Смышляев В.К. О математике и математиках. - Марийское книжное издательство, 1977.

    Тучнин Н.П. Как задать вопрос. - М.: Просвещение, 1993.

    Черкасов О.Ю. Планиметрия на вступительном экзамене. - М.: Московский лицей, 1996.

    Энциклопедический словарь юного математика. Сост. А.П. Савин. - М.: Педагогика, 1985.

    Энциклопедия для детей. Т. 11. Математика. /Глав. Ред. М.Д. Аксёнова. - М.: Аванта +, 2001.

Когда вы только начинали изучать квадратные корни и способы решения иррациональных уравнений (равенств, содержащих неизвестную под знаком корня), вы, вероятно, получили первое представление об их практическом использовании. Умение извлекать квадратный корень из чисел также необходимо для решения задач на применение теоремы Пифагора. Эта теорема связывает длины сторон любого прямоугольного треугольника.

Пусть длины катетов прямоугольного треугольника (тех двух сторон, которые сходятся под прямым углом) будут обозначены буквами и , а длина гипотенузы (самой длинной стороны треугольника, расположенной напротив прямого угла) будет обозначена буквой . Тогда соответствующие длины связаны следующим соотношением:

Данное уравнение позволяет найти длину стороны прямоугольного треугольника в том случае, когда известна длина двух других его сторон. Кроме того, оно позволяет определить, является ли рассматриваемый треугольник прямоугольным, при условии, что длины всех трёх сторон заранее известны.

Решение задач с использованием теоремы Пифагора

Для закрепления материала решим следующие задачи на применение теоремы Пифагора.

Итак, дано:

  1. Длина одного из катетов равняется 48, гипотенузы – 80.
  2. Длина катета равняется 84, гипотенузы – 91.

Приступим к решению:

a) Подстановка данных в приведённое выше уравнение даёт следующие результаты:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b = 64 или b = -64

Поскольку длина стороны треугольника не может быть выражена отрицательным числом, второй вариант автоматически отбрасывается.

Ответ к первому рисунку: b = 64.

b) Длина катета второго треугольника находится тем же способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b = 35 или b = -35

Как и в предыдущем случае, отрицательное решение отбрасывается.

Ответ ко второму рисунку: b = 35

Нам дано:

  1. Длины меньших сторон треугольника равны 45 и 55 соответственно, большей – 75.
  2. Длины меньших сторон треугольника равны 28 и 45 соответственно, большей – 53.

Решаем задачу:

a) Необходимо проверить, равна ли сумма квадратов длин меньших сторон данного треугольника квадрату длины большей:

45 2 + 55 2 = 2025 + 3025 = 5050

Следовательно, первый треугольник не является прямоугольным.

b) Выполняется та же самая операция:

28 2 + 45 2 = 784 + 2025 = 2809

Следовательно, второй треугольник является прямоугольным.

Сперва найдем длину наибольшего отрезка, образованного точками с координатами (-2, -3) и (5, -2). Для этого используем известную формулу для нахождения расстояния между точками в прямоугольной системе координат:

Аналогично находим длину отрезка, заключенного между точками с координатами (-2, -3) и (2, 1):

Наконец, определяем длину отрезка между точками с координатами (2, 1) и (5, -2):

Поскольку имеет место равенство:

то соответствующий треугольник является прямоугольным.

Таким образом, можно сформулировать ответ к задаче: поскольку сумма квадратов сторон с наименьшей длиной равняется квадрату стороны с наибольшей длиной, точки являются вершинами прямоугольного треугольника.

Основание (расположенное строго горизонтально), косяк (расположенный строго вертикально) и трос (протянутый по диагонали) формируют прямоугольный треугольник, соответственно, для нахождения длины троса может использоваться теорема Пифагора:

Таким образом, длина троса будет составлять приблизительно 3,6 метра.

Дано: расстояние от точки R до точки P (катет треугольника) равняется 24, от точки R до точки Q (гипотенуза) – 26.

Итак, помогаем Вите решить задачу. Поскольку стороны треугольника, изображённого на рисунке, предположительно образуют прямоугольный треугольник, для нахождения длины третьей стороны можно использовать теорему Пифагора:

Итак, ширина пруда составляет 10 метров.

Сергей Валерьевич

Однако название получено в честь учёного только по той причине, что он первый и, даже единственный человек, который смог доказать теорему.

Немецкий историк математики Кантор утверждал, что о теореме было известно ещё египтянами приблизительно в 2300 году до н. э. Он считал, раньше строили прямые углы благодаря прямоугольным треугольникам со сторонами 3, 4 и 5.

Известный учёный Кеплер говорил, что у геометрии есть незаменимое сокровище – это теорема Пифагора, благодаря которой можно вывести большинство теорем в геометрии.

Раньше теорему Пифагора называли “теоремой невесты” или “теоремой нимфы”. А всё дело в том, что её чертёж был очень похож на бабочку или нимфу. Арабы же, когда переводили текст теоремы, решили, что нимфа означает невеста. Так и появилось интересное название у теоремы.

Теорема Пифагора, формула

Теорема

– в прямоугольном треугольнике сумма квадратов катетов () равна квадрату гипотенузы (). Это одна из основополагающих теорем эвклидовой геометрии.

Формула:

Как уже говорилось, есть много разнообразных доказательств теоремы с разносторонними математическими подходами. Однако, более часто используют теоремы, связанные с площадями.

Построим на треугольнике квадраты (синий , зеленый , красный )

То есть сумма площадей квадратов, построенных на катетах равняется площади квадрата, построенном на гипотенузе. Соответственно, площади этих квадратов равны – . Это и есть геометрическое объяснение Пифагора.

Доказательство теоремы методом площадей: 1 способ

Докажем, что .

Рассмотрим всё тот же треугольник с катетами a, b и гипотенузой c.

  1. Достраиваем прямоугольный треугольник до квадрата. От катета “а” продолжаем линию вверх на расстояние катета “b” (красная линия).
  2. Далее ведём линию нового катета “а” вправо (зелёная линия).
  3. Два катета соединяем гипотенузой “с”.

Получается такой же треугольник, только перевёрнутый.

Аналогично строим и с другой стороны: от катета “а” проводим линию катета “b” и вниз “а” и “b” А снизу от катета “b” проводим линию катета “а”. В центре от каждого катета провели гипотенузы “с”. Таким образом гипотенузы образовали квадрат в центре.

Этот квадрат состоит из 4-х одинаковых треугольников. А площадь каждого прямоугольного треугольника = половина произведения его катетов. Соответственно, . А площадь квадрата в центре = , так как все 4 гипотенузы со стороной . Стороны четырёхугольника равны, а углы прямые. Как нам доказать, что углы прямые? Очень просто. Возьмём всё тот же квадрат:

Мы знаем, что эти два угла, показаны на рисунке, являются 90 градусам. Так как треугольники равны, значит следующий угол катета “b” равен предыдущему катету “b”:

Сумма этих двух углов = 90 градусов. Соответственно, предыдущий угол тоже 90 градусов. Конечно же, аналогично и с другой стороны. Соответственно, у нас действительно квадрат с прямыми углами.

Так как острые углы прямоугольного треугольника в общей сложности равняются 90 градусам, то угол четырёхугольника так же будет равен 90 градусов, ведь 3 угла в сумме = 180 градусов.

Соответственно, площадь квадрата складывается из четырёх площадей одинаковых прямоугольных треугольников и площади квадрата, который образован гипотенузами.

Таким образом, получили квадрат со стороной . Мы знаем, что площадь квадрата со стороной – это будет квадрат его стороны. То есть . Этот квадрат состоит из четырёх одинаковых треугольников.

И это значит, что мы доказали теорему Пифагора.

ВАЖНО!!! Если находим гипотенузу, тогда складываем два катета, а затем ответ выводим из корня. При нахождении одного из катетов: из квадрата длины второго катета вычитаем квадрат длины гипотенузы и находим квадратный корень.

Примеры решения задач

Пример 1

Задача

Дано: прямоугольный треугольник с катетами 4 и 5.

Найдите гипотенузу. Пока её обозначим “с”

Решение

Сумма квадратов катетов равняется квадрату гипотенузы. В нашем случае – .

Воспользуемся теоремой Пифагора:

Итак, , а . Катеты в сумме получают 41.

Тогда . То есть квадрат гипотенузы равен 41.

Квадрат числа 41 = 6,4.

Мы нашли гипотенузу.

Ответ

Гипотенуза = 6,4